

What Makes Good Open-Vocabulary Detector: A Disassembling Perspective

Qihoo 360 AI Research

Jincheng Li, Chunyu Xie, Xiaoyu Wu, Bin Wang, Dawei Leng

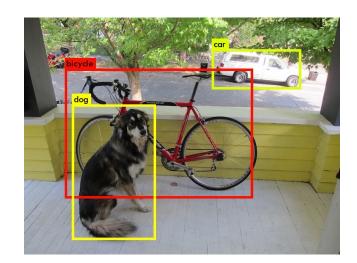
- Traditional object detection
- Open-vocabulary object detection
- Our approach
- Experiment
- Conclusion

Traditional object detection

bicycle

dog

car



Traditional object detection:

- require a variety of fine-grained annotations: *bicycle, dog, car*
- localize and classify seen categories: *bicycle*, *dog*, *car*
- human annotations are costly and tedious

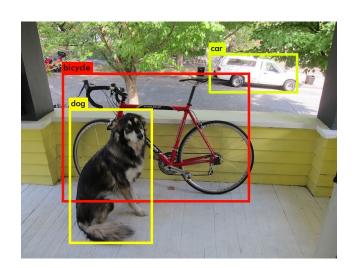
Test

Train

Open-vocabulary object detection (OVD)



Train



Open-vocabulary object detection:

- require small pre-defined (base) categories: *bicycle*
- predict pre-defined and unseen (novel) categories: *bicycle, dog, car*

- Whether to use detection-tailored pre-trained CLIP remains an open question
- How to effectively improve the detection ability under the settings of the OVD task is still a challenge

- We set out to address these issues under the OVD settings
- Our goal is to analyze which part of localization and
 - classification can improve the overall performance of OVD task

Three families of OVD methods

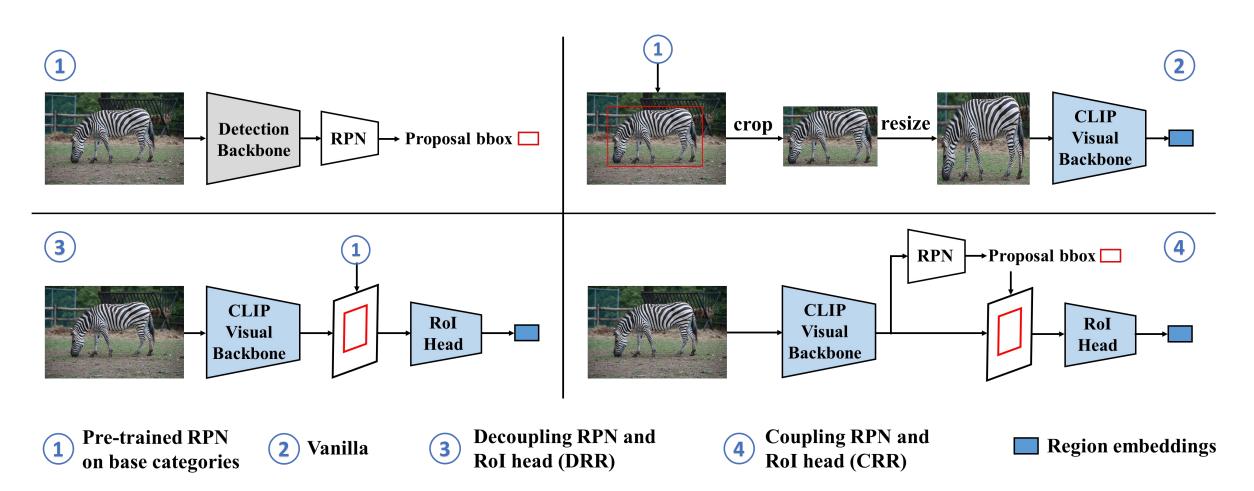


Figure 1: An overview of three approaches: a vanilla method, DRR and CRR.

Table 1: Performance on OVD-COCO compared with state-of-the-art methods.

Method	Extra Dataset	Backbone	Novel AP ₅₀	Base AP ₅₀	Overall AP ₅₀
OVR-CNN [24]	COCO Captions	ResNet50	22.8	46.0	39.9
ViLD [7]	-	ResNet50	27.6	59.5	51.2
Detic [28]	COCO Captions	ResNet50	27.8	47.1	45.0
RegionCLIP [26]	CC3M	ResNet50	31.4	57.1	50.4
BARON [20]	COCO Captions	ResNet50	33.1	54.8	49.1
Vanilla (Ours)	_	ResNet50	31.8	37.2	35.5
CRR (Ours)	CC3M	ResNet50	32.0	52.5	47.1
DRR (Ours)	CC3M	ResNet50	35.8	54.6	49.6

- The vanilla method achieves comparable results on novel categories but obtains bad results on base categories
- CRR obtains a higher Novel AP than RegionCLIP, but lower than BARON
- DRR achieves the best results and outperforms BARON by 2.7 Novel AP

Table 2: Performance on OVD-LVIS compared with state-of-the-art methods.

Method	Backbone	Require Novel Class [20]	AP_r	AP_c	AP_f	mAP
RegionCLIP [26] ViLD [7] BARON [20]	ResNet50 ResNet50 ResNet50	\times \checkmark \checkmark	17.1 16.7 20.1	27.4 26.5 28.4	34.0 34.2 32.2	28.2 27.8 28.4
Vanilla (Ours) CRR (Ours) DRR (Ours) DRR (Ours)	ResNet50 ResNet50 ResNet50 ResNet50	× × ×	17.2 14.0 20.1 22.0	14.8 23.7 29.9 25.4	11.5 28.5 35.7 33.7	13.9 21.9 30.5 28.1

- DRR achieves 20.1 AP_r, which is significantly better than RegionCLIP by 3 AP_r
- Similar to OVD-COCO, CRR still leads a competitive result
- The vanilla method obtains bad results compared to other methods

Table 3: Influence of object localization on OVD-COCO. Faster Table 5: Effect of image embedding ensemble on OVD-COCO.

Method	Ensemble	Novel AP ₅₀	Base AP ₅₀	Overall AP ₅₀
Vanilla	×	27.3	28.9	28.5
Vanilla	\checkmark	29.6	32.1	31.1

Table 7: Effect of CLIP visual backbone on OVD-COCO compared with state-of-the-art methods.

Method	Visual Backbone	Detection-tailored Pre-training	Novel AP ₅₀	Base AP ₅₀	Overall AP ₅₀
RegionCLIP [26]	ResNet50	\times \checkmark \checkmark	14.2	52.8	42.7
RegionCLIP [26]	ResNet50		31.4	57.1	50.4
DRR (Ours)	ResNet50		35.8	54.6	49.4
RegionCLIP [26]	ResNet50x4	\checkmark	39.3	61.6	55.7
DRR (Ours)	ResNet50x4		41.9	57.8	53.7

Table 6:

- Replacing RPN with Faster R-CNN cannot achieve the expected results
- The significant objectness logits within a better offline RPN are indeed important for model performance Table 7:
- DRR surpasses the previous state-of-the-art (RegionCLIP) by 2.6 AP50 in novel categories

Table 8: Comparisons of the computational efficiency overResNet50 on OVD-COCO.

Method	Params ↓	FPS (BS1 A100) ↑
Vanilla	136.9 M	2
DRR	143.4 M	12
CRR	111.6 M	13

• Sharing the visual backbone (CRR) is indeed more effective in specific real-world scenarios

Product Image Dataset

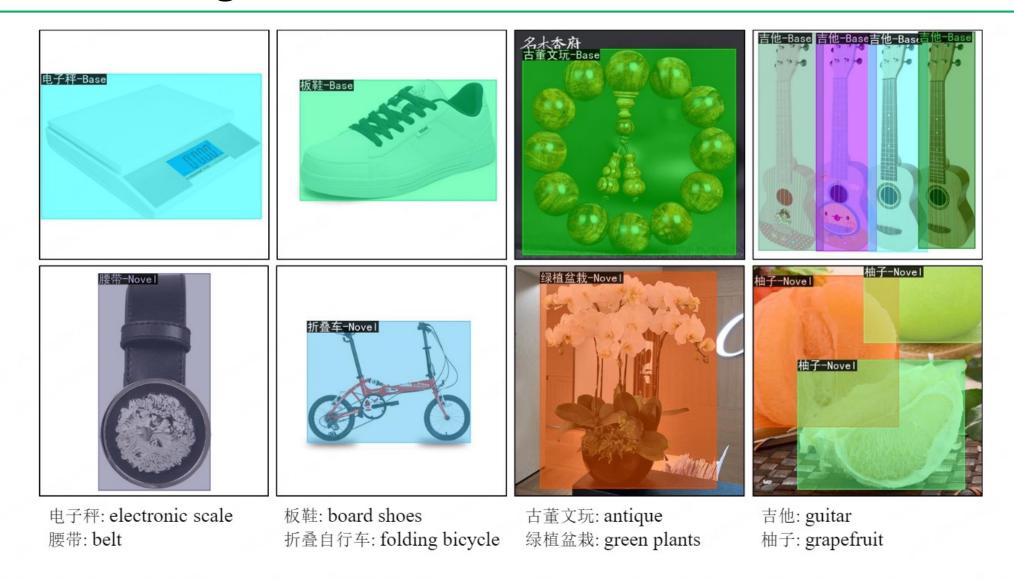


Figure 2: Examples (with annotations) of PID. The first and second rows are from the base and novel categories, respectively.

Table 9: Comparisons of different fundamental approaches overResNet50 on PID. *More analysis can be found in Section 5.2.

Method	Visual Backbone	Generalized (233+233)			
		Novel	Base	Overall	
Vanilla*	ResNet50	42.0	52.8	47.4	
DRR	ResNet50	30.7	35.6	33.2	
CRR	ResNet50	27.6	34.3	31.0	

Thanks!