

Explainable Local and Global Models for Fine-Grained Multimodal Product Recognition

Tobias Pettersson, Maria Riveiro, Tuwe Löfström

Product Recognition in Grocery Stores

SCO Fraud Detection

Shelf Availability

Automatic Checkout

Fine-Grained Product Recognition Problem

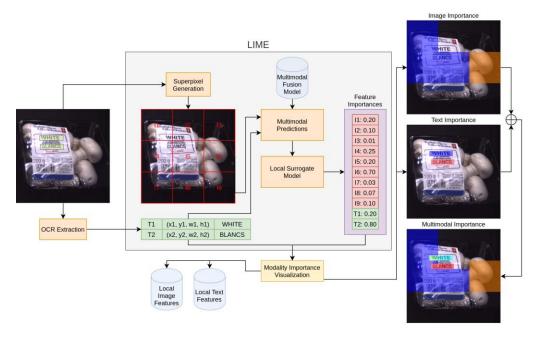
Fine-Grained Product Recognition with Image and OCR

Medium Ground Beef

Extra Lean Ground Beef

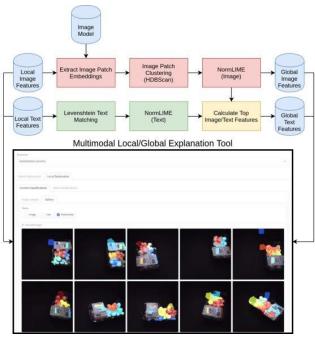
Interpretability of Multimodal Product Recognition Models

- Complex and difficult to visualize predictions of multimodal product recognition models
- Understanding their behaviour and limitations are key for performing debugging and evaluation before deployment
- Goal: Provide techniques and tools for machine learning experts/developers/stakeholders to debug and assess their multimodal models during development and deployment

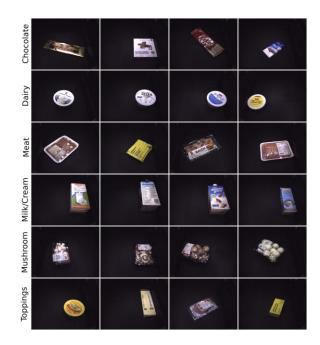

Explaining Multimodal Product Recognition Models

We present following:

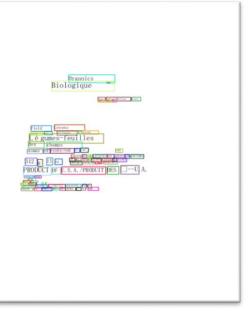
- A local explanation approach using LIME with multimodal data (Image and OCR) to explain predictions for different samples
- An approach that aggregates the local explanations and provides global explanations for each class
- Demonstrating the utility of our approach using three multimodal models with a fine-grained grocery product dataset



Local Explanations with LIME using Multimodal Data

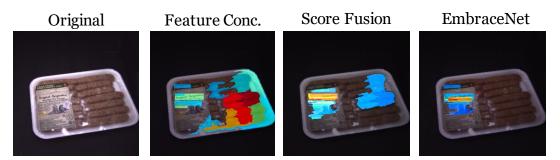

Global Explanations with LIME using Multimodal Data

Experimental Setup - Dataset


- 256 classes, each with 100 training and 50 validation samples
- Real-world environment

Experimental Setup - Dataset

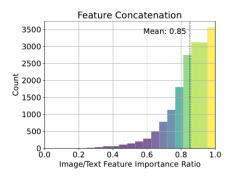
Experimental Setup - Models

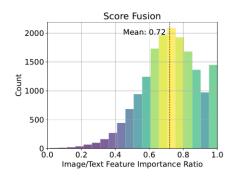

- Unimodal models: ResNet50 and DistilBERT
- Multimodal models: Score Fusion,
 Feature Concatenation,
 EmbraceNet

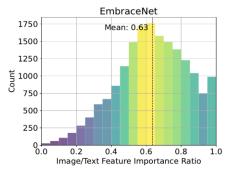
Models	Accuracy
DistilBERT	87.1%
ResNet50	93.2%
Score Fusion	93.4%
Feature Concatenation	96.5%
EmbraceNet	96.5%


Classification Results

Results - Local Explanations


Visualization of local explanations for multimodal models




Screenshot from Explanation Tool

Results - Local Explanations

Results - Global Explanations

Top global image feature

Top global text feature

Summary and Future Work

Summary

- Present an approach for local and global explanations for product recognition models using image and OCR data
- Shown the utility of our approach by comparing three different multimodal models
- Applicability in other domains: Online retail, document classification

Future work

- Dataset will be available
- Reduce computational requirements
- User study

Thank You!